The analysis of single crystal diffuse scattering using the Reverse Monte Carlo method: Advantages and problems

نویسنده

  • T. R. Welberry
چکیده

The scattering from crystals can be divided into two parts: Bragg scattering and diffuse scattering. The analysis of Bragg diffraction data gives only information about the average structure of the crystal. The interpretation of diffuse scattering is in general a more difficult task. A recent approach of analysing diffuse scattering is based on the Reverse Monte Carlo (RMC) technique. This method minimises the difference between observed and calculated diffuse scattering and leads to one real space structure consistent with the observed diffuse scattering. The first example given in this paper demonstrates the viability of the RMC methods by refining diffuse scattering data from simulated structures showing known occupational and displacement disorder. As a second example, results of RMC refinements of the diffuse neutronand X-ray scattering of stabilised zirconia (CSZ) are presented. Finally a discussion of the RMC method and an outlook on further developments of this method is given. ∗Email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Influence of Crystal Size and Material on Intercrystal Scattering and Parallax in PET Block Detectors: A Monte Carlo Study

Introduction:  In  this  study,  we  utilized  the  MCNP4C  Monte  Carlo  code  to  quantitatively  evaluate  the  influence of crystal size and material on intercrystal scatter and parallax effects.   Materials and Methods:  For each of the 5 selected crystals (BGO, LSO, LYSO, LuAP, GSO), transport of  511  keV  photons  originating  from  a  point  source  and  incident  on  the  central  cry...

متن کامل

Monte Carlo Modelling of Single-Crystal Diffuse Scattering from Intermetallics

Single-crystal diffuse scattering (SCDS) reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structur...

متن کامل

Image Optimization in Single Photon Emission Computed Tomography by Hardware Modifications with Monte Carlo Simulation

Introduction: In Single Photon Emission Computed Tomography (SPECT), the projection data used for image reconstruction are distorted by several factors, including attenuation and scattering of gamma rays, collimator structure, data acquisition method, organ motion, and washout of radiopharmaceuticals. All these make reconstruction of a quantitative SPECT image very difficult. Simulation of a SP...

متن کامل

Optimization of a SPECT system for imaging of 90Y in liver using Monte Carlo method

Introduction: Acquiring a high quality image has assigned an important concern for obtaining accurate diagnosis in nuclear medicine. Detector and collimator are critical component of Single Photon Emission Computed Tomography (SPECT) imaging system for giving accurate information from exact pattern of radionuclide distribution in the target organ. The images are strongly affect...

متن کامل

Engineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)

Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008